Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis
نویسندگان
چکیده
Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na⁺/H⁺ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH.
منابع مشابه
Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs)
BACKGROUND Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-m...
متن کاملDynamin- and clathrin-dependent endocytosis in African swine fever virus entry.
African swine fever virus (ASFV) is a large DNA virus that enters host cells after receptor-mediated endocytosis and depends on acidic cellular compartments for productive infection. The exact cellular mechanism, however, is largely unknown. In order to dissect ASFV entry, we have analyzed the major endocytic routes using specific inhibitors and dominant negative mutants and analyzed the conseq...
متن کاملRegulation of raft-dependent endocytosis
Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveolae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholest...
متن کاملThe lipid raft-associated protein CD98 is required for vaccinia virus endocytosis.
Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is...
متن کاملCaveosomes and endocytosis of lipid rafts.
Endocytosis of various endogenous plasma membrane molecules, including signalling receptors, glycosphingolipids and glycosylphosphatidylinositol (GPI)-linked proteins, occurs in the absence of functional clathrin-coated pits. Most of these molecules are found in biochemically defined lipid rafts, which suggests that at least some clathrin-independent endocytosis may be raft specific or raft med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012